Conjugate Gradient with Subspace Optimization
نویسنده
چکیده
In this paper we present a variant of the conjugate gradient (CG) algorithm in which we invoke a subspace minimization subproblem on each iteration. We call this algorithm CGSO for “conjugate gradient with subspace optimization”. It is related to earlier work by Nemirovsky and Yudin. We apply the algorithm to solve unconstrained strictly convex problems. As with other CG algorithms, the update step on each iteration is a linear combination of the last gradient and last update. Unlike some other conjugate gradient methods, our algorithm attains a theoretical complexity bound of O( √ L/l log(1/ )), where the ratio L/l characterizes the strong convexity of the objective function. In practice, CGSO competes with other CG-type algorithms by incorporating some second order information in each iteration.
منابع مشابه
Convergence Rate Analysis of the Majorize-Minimize Subspace Algorithm
State-of-the-art methods for solving smooth optimization problems are nonlinear conjugate gradient, low memory BFGS, and Majorize-Minimize (MM) subspace algorithms. The MM subspace algorithm which has been introduced more recently has shown good practical performance when compared with other methods on various optimization problems arising in signal and image processing. However, to the best of...
متن کاملAn Efficient Conjugate Gradient Algorithm for Unconstrained Optimization Problems
In this paper, an efficient conjugate gradient method for unconstrained optimization is introduced. Parameters of the method are obtained by solving an optimization problem, and using a variant of the modified secant condition. The new conjugate gradient parameter benefits from function information as well as gradient information in each iteration. The proposed method has global convergence und...
متن کاملA New Hybrid Conjugate Gradient Method Based on Eigenvalue Analysis for Unconstrained Optimization Problems
In this paper, two extended three-term conjugate gradient methods based on the Liu-Storey ({tt LS}) conjugate gradient method are presented to solve unconstrained optimization problems. A remarkable property of the proposed methods is that the search direction always satisfies the sufficient descent condition independent of line search method, based on eigenvalue analysis. The globa...
متن کاملA Three-terms Conjugate Gradient Algorithm for Solving Large-Scale Systems of Nonlinear Equations
Nonlinear conjugate gradient method is well known in solving large-scale unconstrained optimization problems due to it’s low storage requirement and simple to implement. Research activities on it’s application to handle higher dimensional systems of nonlinear equations are just beginning. This paper presents a Threeterm Conjugate Gradient algorithm for solving Large-Scale systems of nonlinear e...
متن کاملA Note on the Descent Property Theorem for the Hybrid Conjugate Gradient Algorithm CCOMB Proposed by Andrei
In [1] (Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization J. Optimization. Theory Appl. 141 (2009) 249 - 264), an efficient hybrid conjugate gradient algorithm, the CCOMB algorithm is proposed for solving unconstrained optimization problems. However, the proof of Theorem 2.1 in [1] is incorrect due to an erroneous inequality which used to indicate the descent property for the s...
متن کامل